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J.   Hardy 

Lawrence Radiation Laboratory,  University of California 
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August 10,   1965 

ABSTRACT 

A method for construction of simple waves is presented.    Attention is focused on 

forward-facing compression waves,   specifically at the points at which shocks develop, 

and what to expect concerning shock strength,  etc.    Discussion is limited to 7-law gases, 

although the technique is general. 

INTRODUCTION 

Section 1 gives the construction of simple wave solutions for y -law gases.    The 

method is general; restriction to y-law gases is for convenience.    Velocity,  density, . . . , 

are constant along a family characteristics presented. The region multiply covered by the 

family of characteristics is discussed along with the envelope of the family. 

Section 2 presents the solution (complete with graphs) to several piston motions, 

illustrating the properties of the most general solutions. 

Section 3 shows that shocks develop only on the envelope of the characteristics. 

The local behavior of the envelope is given,  depending on the sign of a certain differential 

inequality.    The behavior is examined specifically for a neighborhood of zero time. 

Means are presented for analysis of a general flow. 

SECTION 1 

The hydrodynamic equations for one-dimensional flow are 

pt + upx + pux = 0, 

u, + uu   + - p    = 0, (1) t x      p *x v   ' 

et + ucx + i (Pu)x = 0, 

where p(x, t) is the density,  u(x, t) is the material speed,  e(x, t) is the specific energy 

density,   and p(x, t) is the pressure. 

In the case of isentropic flow,  the system yields p = p(p); and for a y-law gas, 

p = pn(7^-/     •    Under the enumerated circumstances 
UVP0; 

Pt + Upx + PUx = °' 
c2 (2) 

u, + uu    + —   p    =0, t x      p     rx 

where c    = 7p/p. 



The interest is in solutions to this latter set of equations.    The flow considered 

will be that of a piston pushing into a gas at rest,  the piston speed g(t) being such that 

the flow is  everywhere continuous. 

The general character of these solutions is well known.    They are simple waves, 

flows whose image in the hodograph plane (p, u) is a curve.    If g(t) is such that the piston 

starts from zero speed (necessary) and moves to the right,  the following relations among 

u,   c,   p,   p,  uQ,   cQ,  p0>  p0  are known to hold (uQ,  pQ,  c  ,  pQ are the rest values): 

1 u - u0\2-y/(y-l) 

^^^) 

f        «v - 1   u - uo\2/<Y-D 
P=PO(

1
 

+
 V-^J • (3) 

c = co + Hr (u " V' 
relations which hold for a foreward-facing  simple wave. 

Since the value of u„ makes no difference in any arguments,  we shall assume 

u„ = 0.    Substituting the expression for p  as a function of u into the continuity equation 

ft + upx + Pux = °' 

we obtain 

ut+(co+1T-luH = 0> (4) 

a quasi-linear partial differential equation whose solution u(x, t) is constant along the 

characteristic curves 

dt dx 
1 ,7 + 1 

C0+     2      U 

These are straight lines,   since u is constant along them. 

Consider now the initial value problem (see Fig.   1).    At t = 0,  u = 0 along the x axis. 

Along x(t),  u = g(t),  the piston speed.    Along t = 0,  the characteristics are the lines 

x = x» + cnt,   and along these lines u,  the solution to equation (4) is zero. 

rto 
At time t„,  the piston is at x(tQ) =   \       g(? ) dS   with speed g(t„).    The character- 

istic passing through this point is 

x(tQ) + - + y   l sit) "0 2      g^ 0; (t - tQ), (5) 

and along it u = g(tn).    Thus,   a solution has been constructed,   a ruled surface,   giving 

u(x, t) for those points in the (x, t) plane for which the simple wave is a valid solution. 

Since near t = 0,   g(t) > 0,  the one-parameter family of characteristics constructed does 
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ito> + [co + aT1«V](t-to) 

Characteristics 

Fig.   1.    Construction of characteristics. 

not cover the plane simply.    Some points in the (x, t) plane must be covered at least 

twice.    It is the implication of this we wish to investigate.    Note that if g is discontinuous, 

double-valued points (x, t) exist beyond this time.    The double-valued region for u(x, t) 

gives physically unacceptable solutions.    At some points of the boundary of this region, 

a shock will develop.    The simple wave ceases to be a valid solution to the system (1) 

in the whole (x, t) plane. 

Let the piston be located at x^t) at the timet, x (t) =     \    g(f ) d? , g(? ) is monotone 

increasing.    The characteristic passing through (t, x (t)) intersects the characteristic 

through (0, 0),  the wave front traveling with velocity cn,   at a time 

Tl(t) = "(T+)g(t) 
t(cQ + ^-i^gd) - x(t)j (6) 

Let t tend to zero.    If g' (0) f 0,  then 

2c, 
T,(0)   = 

'0 
r~'    (7 + Dg'(o) ■ 

Otherwise,   the demand that g(t) > 0,  t > 0,   requires that 

lim T (t) = + oo . 
t-~0    l 

The characteristics passing through (t, x^t))  and  (V, x (V )) intersect at a time 

(7) 

T0(t,t') 2(t - t1) 
(7 + Dlg(t) - g(t')] t -1- jt, g(?)dl  + 7 + 1 g(t)t - g(t')t'l 

2 t - t' J (8) 

The envelope (r^ , x2) of such lines is given by the limit as t'   approaches t, 

T2(t) =  (7 + l)g'(t) c    +2- C0 - g(t) + ^ tg' (t) (9) 



where g'(t) f 0,  or,  if g' (t) = 0, 

lim T9(t) = + 90. (1°) 
f+t    * 

The coordinate x for the envelope is obtained from substituting   T2(t) in equation (5). 

For the class of monotone increasing functions g(t) (giving rise to forward-facing 

compression waves) the time at which a shock appears in the flow,  a time corresponding 

to inf(t, x)  for all (t, x) in the region doubly covered by the characteristics, is given by 
(t) 

the time 

T0 = inf T (t). 
i      t>0    * 

(11) 

x„ = inf X(T„) located by equation (5).    For purposes of examining these functions, the 
(T2) 

following easily developed formulae are useful: 

£ÜL(C    -xj, (12) d     ,,,    rj , o   
dt Tl(t) ~ 7 + 1      (T + Dg(t)   " g(t)2   v"0 " ~0' 

_d_ 
dt 

dr2(t) 

~dt ^t:Äh^«™]} 
dt [X(T2)   =   CQT2]   = g(t) g"<t) 

fg'(t)]' h + 1-1 f^g(t)       .. 

X(T2) > + V^v]^} = ^<V - 8<Vjf - f^[C0 

(13) 

(14) 

+2. - 1 g(t) •,  (15) 

where t1  f t in equation (14). 

SECTION 2 

Prior to considering general classes of problems,  we will consider several 

examples . 

Example 1: cQ = 1,  g(t) = 2t, y = 2. 

The solution to the problem is given by 

u(x, t) 
JO,      x = xQ + t,  xQ ^ 0, 

|2tQ,  x = tQ
2 + (1 + 3tQ)(t - tQ),  tQ> 0, 

p and p being given by equation (3),  and it solves the piston problem in the region of 

single valuedness.    This solution is plotted in Fig.  2.    The piston path,  some character- 
istics,  and the point where the shock originates are indicated.    Suppose t' > t > 0. 
Formula (8) gives the time of intersection for the characteristics passing through the 

piston at these times as 
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Piston 
Speed 

Fig.   2.    Example 1. 

T2(t,t' ) =|(t + t') +i> |, 

with equality occurring for t = t'  =0.    Thus,   any characteristic passing through a point 

near the origin intersects the wave front at a time T a 1/3 and at a point X(T) a 1/3, 

these values being the limiting values.    For x > 1/3,  t > 1/3,  u(x, t) is double-valued on 

the wave front.    At t = 1/3,  a shock starts at x = 1/3,  with jump in velocity growing 

continuously from zero. 

Example 1 is a special case of g(t) = 2at,  a > 0,  where always the infimum of the 

times of intersection of pairs of characteristics is T   - -KSL,  the shock always originating 

on the wave front.    Note that this point recedes to infinity as a tends to zero. 

-1/2 Example 2: cft = 1, y = 3,   g(t) = (1 - 21)    '    - 1.    The characteristics all pass 

through the point (l/2,   1/2).    Also,     lim        g(t) = +00 .    This solution is graphed in Fig. 
t-+1/2-0 

3.    The example ceases to be of interest at t = 1/2. 

From it,   an interesting example can be constructed.    Let 

g*(t) 
(1 - 2t)"1//2 - 1,   0 < t < 1/4, 

N/2 - 1, t > 1/4. 
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Wave Front     x = ont 

Fig.   3.    Example 2. 

For t > 1/4,  the piston follows a straight line in the (x, t) plane,  and the characteristics 

are all parallel straight lines,  intersecting x = c„t  at times at least 1/4.    Along these 

u(x, t) has the value <s/2 - 1.    The solution thus consists of this plane parallel to the (x, t) 

plane,  plus that section of example 2 corresponding to characteristics for time t < 1/4. 

At t = 1/2,   a pair of shocks appear at x = 1/2,  one with jump in velocity smaller 

than N/2 - 1 but still positive.    This shock proceeds into the undisturbed medium with this 

initial shock strength.    Characteristically,  a weaker shock proceeds from this point back 

into the disturbed medium - toward the piston.    A contact discontinuity is present always 

at the point of origination of these two shocks.    Until the weak shock reaches the piston, 

the shock velocities are constant,  the states behind each being constant. 

Example 2 is an example of a piston velocity with an important separation property 

to be discussed directly. 



Example 3: 

g(t) 

c0=l,7 

t. 
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3,    and g(t) defined by 

0 £t < 0.3, 

4t - 1.05,  t > 0.3, 

a continuous function with jump in g' (t) at t = 0.3.    The solution is graphed in Fig.  4 

complete with characteristics and piston path.    Examination of the characteristics 

through the formulae (8),   (12),   and (13) shows that the double-valued region in the range 

of u has a point on its boundary at t = 0.44375 . . .   and x = 0.20937 . . . ,   all other points 

on its boundary (and interior) corresponding to larger times.    This point is on the 

characteristic passing through the piston location at time t = 0.3; u(x, t) has a discontinu- 

ous derivative at the piston at t = 0.3 and this discontinuity propagates along this charac- 

teristic. 

Piston 
Speed 

Wave Krönt 

Fig.   4.    Example 3. 

A shock originates at this boundary point with shock strength (jump in velocity, 

etc. ) growing continuously from zero.    Observe that this shock originates in the region 

of continuous flow well behind the wave front. 

From subsequent discussion it will be apparent that it would be possible to modify 

g(t),  t > 0.3,   in such a fashion that a shock (see Example 2) appears at this point 

t = 0.44375,  x = 0.20937,  with a nonzero jump in velocity, 

Another important observation is that the shock can originate in the region of con- 

tinuous nonconstant flow (behind the wave front) without a discontinuity in any derivative 

of g(t) occurring.    In example 3,  take 
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g(t) = t4/3,   t > 0. 

The boundary point of the region of double values with minimum time occurs at t = 0.97847 

x = 0.9642 . . . ,  which is a point in the region of continuous nonconstant flow. 

These examples exhibit the important properties of the solutions to piston problems 

which persist for a time as simple waves,  with shocks then forming somewhere.    Be- 

cause of the arbitrariness of g(t) and the possibility of patching functions of different 

characters together,flows with quite varied behavior are possible,  as for example, 

simultaneous appearance at t = t„ of n shocks of varying initial shock strengths,   etc. 

(sum of the jumps of velocity at the shocks is strictly less than g(t)). 
Before discussing local behavior of the envelope,  let us show that all candidates 

for infima are provided by the envelope of characteristics. 

g(t) dt 

SECTION 3 

Consider Fig. 5, and piecewise smooth g(t), g'(t> f 0. Let C and C be a pair of 

characteristics corresponding to times t and t' . The slope of the characteristics is a 

monotone increasing function of this time, the time they pass through the piston location. 
Thus,  for the time t.   = (t + t' )/2 the slope 

is intermediate.    It must intersect both C 

and C   at times that may be equal but can-be 

no later than the time corresponding to the 

intersection of C and C .    Choose the 

earlier time.    Pick a time t? equidistant 

from t1  and the time corresponding to the 

characteristic giving the earliest time. 

The characteristic C„ corresponding to t^ 

then intersects C1  and either C or C (which- 

ever gave the least time) at a time no later 

than the time of intersection of this later 

pair.    Thus,   continuing,  we construct a 

convergent sequence t.., t„,   . . . ,  t   . . . , 

the sequence of whose pairs of characteristics is converging,   and the sequence of whose 

points of intersection is converging to a point on the envelope of the characteristics. 

Thus,  for any such pair C,  C    of characteristics,  no matter how remote,  there is a 

point on the envelope of the characteristics whose time is not larger than the time of 

intersection of the pair. 

The time    T  (t) is the time of intersection of the characteristic corresponding to 

t   with C    (Fig.   6); hence,  for each time,  by the above,  there is a value of T (t) which is 

no larger.    Thus,  the infimum sought over the whole field of intersection characteristics 

will be furnished by     inf T„(t). 
t>0    * 

Fig.   5. 
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x = x 
(T2, X(T2)) 

<V+[CO+^<V](I-V 

(Ti'Vi) 

Fig.   6. 

Turn now to a discussion of local behavior. Suppose all characteristics corres- 

ponding to a time t„ > 0 pass through the same point (T, X(T)). The function g(t) from 

equation (9) must satisfy the differential equation 

2 c 

y T 1        y 

which has a solution for t 

T7+^Tg(t) + (t-T)g'(t) 

0 t < T , 

gX<t) cn + g(tn); 
\( T   -  t 

0 

^1 
\7+l 

y  -  1 "0       6V  O'J   U-t 

This solution satisfies the equation 

2cQ 
y  -  I" 

g + ^ö-1g(t) = 0. 

(16) 

(17) 
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As it happens,  much can be learned concerning the local behavior of intersecting 

characteristics (a neighborhood of characteristics about that corresponding to tQ)  accord- 

ing as 

Y-^-[co+-2fi^] (18) 

is positive,  negative,  or zero.    If it is positive,  in every sufficiently small neighbor- 

hood of tQ to the left of tQ,  g(t) < g^t).    If it is negative,  the inequality is reversed. 

This property enables a discussion of the local behavior of the envelope, of characteristics 

to be given. 
Consider Fig.   6.    Suppose that in a neighborhood of I      g(t) is twice continuously 

differentiable and the expression (18) is positive.    Then,  from formulae (13),  (14) and 

(15) it is clear that all of 

dr2(t)      dx(r2)      d 

"""dt      '      dt     ' dt X(T2)   -CjjTg ,and   ^X(T2)- c0+^J^l)h2 
are positive.    Thus^  as t increases from t ,   X(T2> and   T2 increase monotonically. 

Since   4r < * (T J - ! cA + ^-^ g(t.)  T.} ■   is increasing,  the point (T9, X (T„)) is moving to 
dt   '        *      i_ u       ^ i  _   £.■■ " <=• 

the left of C„,  that is,   into the dotted region.    Thusr^tj) furnishes a minimum for 

T9(t.).  those values of t in the neighborhood of t^   which are larger than t^. 

If the expression (18) is negative, by the same reasoning, the point is moving into 

the crosshatched region (to the right of C?2 with both T0 and X(T2) decreasing monotoni- 

cally as  t increases from t  ). 
In either case, the curve T„, X(T2) is tangent to C2 at l^ since it is the envelope 

of these characteristics fit is also easily verified from equations (13) and (14) that 

dx(T„) 2    ..       ^y + 1 c. ^g(i) dr2 -0 

Observe that a local maximum or minimum in T_(t) corresponds to a cusp in the 

envelope. 
We will now consider a neighborhood of the origin in which g(t) is twice continuously 

differentiable (permitting g"(t)-*°o   as t— 0) and  g'   can be zero only at the origin. 

Observe that if g'(0) f 0,   T  (0) = T2<0) - 2cQ/(7 + l)g' (0).    If g' (0) = 0,  T^ -*+oo  as 

t- 0 but remains finite for all subsequent values of g(t).   r2(t) tends to infinity as  t 

tends to any value of for which g'(t) is zero. 
If g' (0) > 0,  then,   according as the quantity (18) is positive or negative,   T2(t), 

X(T„)  moves to the left or right of CQ,   starting from the point 2CQ/(Y + 1) g1 (0),   2cQ 

/(y + Ug' (0)-    lu the first case both r0(t)  and T (t) increase and a minimun is furnished 

by TJO).    In the second case,  r2(t)  is monotone decreasing,   so the infimum is given by 

inf T„(t) for t approaching sup t,   t in the neighborhood. 
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If g'(0) = 0,  diverse pathological situations can occur.    It is expeditious to consider 

the case where g(t) = t^^t), $(0) f 0, 4> twice continuously differentiable in a neighborhood 

of t = 0,   and omit discussion of any pathological situations.    (Fora < 1,  g'(0) = +oo,  ex- 

amination shows that a shock appears at the piston at t = 0,  growing continuously from 

zero strength. )   The interest is in those cases where   a > 1.    In this case, 

fc0 Tjtt)   -   T2(t) 
7 + 1      .a-1     <j>(t)    ~ a<t>(t) + tf (t) 

t%(t)    J0 2       °^(t) + ^ (t)   j 

Since 

and 

-1— €%(?)df  = 0(t),   _7-Ml). = o(t), 
t%(t)   Jo °^(t) + ** (t) 

lim 
t-K) #t)      a^(t) + t«£'(t)    !     $0)   t1 " a 

1       ri -i |  >0, 

there exists a neighborhood of t = 0  such that 

T^t) - r2(t) >0; 

that is,  in this neighborhood   X2(T2>,   T^ is to the left of C„.    Both T  (t) and rJt) tend 

to +oo  as t tends to zero.    Examination of X
(T2),   T„   shows that it is asymptotic to C«. 

Three final observations give sufficient information,   coupled with the previous 

information,  to find the infima and the character of the shock which will occur at these 
various points. 

If,  in a neighborhood,  g(t) satisfies equation (17),  the portion of the envelope 

corresponding to this neighborhood is a point.    If this point is outside the region of influ- 

ence of any other shock which forms in the flow,   an outgoing shock appears at this point 

with jump in velocity less than the jump of g(t) for the set of intersecting characteristics. 
A weaker ingoing shock also forms. 

If g'(t)goes to zero at time t^,  rJt) goes to +oo ,  and the envlope goes to infinity 

asymptotic to the characteristic corresponding to t     x   = x.(t.) +[cn + T !"■* g(t.)] (t - t1). 

If,  while g(t) remains continuous at t ,  g'(t) is discontinuous at t    but limits of 

g'(t) exist to the right and left of t^  the value of T„(t) is discontinuous at t (see equation 

(9)),  as is that of x(r2).    Note,  however,  that the points on the envelope as t    approaches 

1 from the left and right are both on the characteristic corresponding to t  . 

The discontinuity in g'(t) can cause the envelope to shift anywhere along the corre- 
sponding characteristic,   even to the piston front (or behind). 

The spectrum of possibilities arising from simple waves should now be apparent. 

We construct now a g(t) with two infima,  both occurring at time T       Let g(t) be linear, 
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g(0) = 0,  up to the time t..    Pick g'(t1 + 0) so that the corresponding point on the en- 

velope T2,  X(T2) is T2.  x(tx) +[c0 + V^g(tl)](T2 " tl) and continue S(t) according to 
equation (16) up to a time tg <>2.    Set g(t) = g(t2), t > tg.    The envelope is as shown in 

Fig.   7, plus the point at infinity along the characteristic corresponding to tg. 

C, 

Envelope 
(curve + 

= x1(t1) + [c0 + ^iig(t)](t-t1) 

Fig.   7. 

At time T      a shock forms onCn,  growing from zero shock strength.   Simultaneously 
-4-1 

at T„,   x(t ) + cQ + T
2     g(t1)(T„ - t ),  a pair of shocks with positive jump in velocity 

appears.    Note that a contact discontinuity appears with the latter pair of shocks. 

Outside the range of influence of the shocks,  the simple waves remain the solution 

to equations (l). 

SUMMARY 

The method of construction which is presented is valid for all simple waves. 

Attention is focused on forward-facing compression waves.    Means are developed for the 

examination of the infima of the time for points in the region multiply covered by the 

characteristics. 

The author has made cursory examination of the existence theory for solutions of 

equations (1) for times later than that of the appearance of the shock.    Adding the equa- 

tion 

X = X( T2)+ r U dt,    U the shock velocity, (19) 

to the Volterra integral equations for continuous flow (requiring the Hugoniot conditions 

hold across the path, velocity and pressure continuous behind the shock), existence of a 

solution with a shock proceeds readily for times in a neighborhood of the time the shock 

appears.    Moreover,  this is all that is to be expected.    Return to the simple wave whose 
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envelope appears in Fig. 7. Had g'(t, +0) been such that its point on the envelope corre- 

sponds to a time slightly later than T„, the corresponding shocks develop at this slightly 

later time. 

Only by adding (for a forward-facing compression wave with "weak" piston velocity) 

equation (19) with U defined by 

TT/-X- t\ - Um  P(X + e, t)u(X + e, t) - p(X - e, t)u(x - g, t) 
V{X,t) "e^8 p(X + e,t)-p(X-e,t) 

(with the additional requirements above on density,  velocity,   . . . ) at every point of the 

fluid does it seem possible to discuss existence theory in any global sense (all time). 

Even this assumes something about piston strength.    That is,   no double shocks,   as in 

example 2,  occur.    In this later case,  it would be necessary to define two shock velocities, 

U   and U ,  at each point,  and accommodate a more complex algebraic problem. 

Estimates for growth of shock strength in terms of g(t) are possible,   and will 

appear in a subsequent report. 
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